

Route 250

## Corridor Study

Table of Contents

## SECTION <br> PAGE

## I. Project Statement and Purpose

A. Introduction ..... I-1
B. Purpose ..... I-2
C. Municipality Concerns ..... I-2
D. Study Objectives ..... I-4
E. Public Involvement ..... I-5
II. Existing Conditions
A. Location and Site Description ..... II-1
B. Existing Land Use and Zoning ..... II-1
C. Environmental Constraints in the Corridor ..... II-5
D. Review of Comprehensive Plans and Zoning ..... II-5
E. Population and Employment Projections ..... II-8
F. Recent Development Trends ..... II-8
G. Roadway Geometry ..... II-12
H. Daily Traffic Volumes ..... II-14
I. Peak Hour Traffic Volumes ..... II-14
J. Existing Traffic Operations ..... II-16
K. Crash History ..... II-20
L. Public Transit Services ..... II-22
M. Pedestrian Accommodations ..... II-22
III. Future Conditions and Buildout Analysis
A. Buildout Analysis ..... III-1
B. Future Traffic Volume Forecasting Assistance ..... III-3
C. Future Traffic Volumes ..... III-4
D. Future Traffic Operations ..... III-4
IV. Project Strategies and Recommendations
A. Corridor-Wide ..... IV-1
B. Municipality-Specific Recommendations ..... IV-9
C. Probable Cost of Proposed Physical Improvements ..... IV-15
Appendices (Separate Document)

Route 250
Corridor Study
List of Figures

| Figure | Description | Follows Page |
| :---: | :---: | :---: |
| 1 | Study Area | II-1 |
| 2 | Webster Zoning | II-1 |
| 3 | Webster Land Use | II-3 |
| 4 | Penfield Zoning | II-3 |
| 5 | Penfield Land Use | II-3 |
| 6 | Perinton Zoning | II-3 |
| 7 | Perinton Land Use | II-4 |
| 8 | Vacant Land Use | II-4 |
| 9 | Household Change (Units) 2005 to 2025 | II-8 |
| 10 | Household Change (\%) 2005 to 2025 | II-8 |
| 11 | Employment Change (Jobs) 2005 to 2025 | II-8 |
| 12 | Employment Change (\%) 2005 to 2025 | II-8 |
| 13 | Existing Intersection Geometry | II-12 |
| 14 | Posted Speed Limits | II-12 |
| 15 | Webster 2005 Average Annual Daily Traffic Volumes | II-14 |
| 16 | Penfield 2005 Average Annual Daily Traffic Volumes | II-14 |
| 17 | Perinton 2005 Average Annual Daily Traffic Volumes | II-14 |
| 18 | Existing AM Peak Hour Traffic Volumes | II-15 |
| 19 | Existing PM Peak Hour Traffic Volumes | II-15 |
| 20 | Existing AM Peak Hour Level of Service | II-15 |
| 21 | Existing PM Peak Hour Level of Service | II-15 |
| 22 | Bus Routes | II-22 |
| 23 | Bike Rideability | II-22 |
| 24 | Pedestrian Accommodations | II-23 |
| 25A\&B | Webster Vacant and Underutilized Land | III-2 |
| 26A\&B | Penfield Vacant and Underutilized Land | III-2 |
| 27A\&B | Perinton Vacant and Underutilized Land | III-2 |
| 28 | 2025 AM Peak Hour Traffic Volumes | III-4 |
| 29 | 2025 PM Peak Hour Traffic Volumes | III-4 |
| 30 | 2025 AM Peak Hour Level of Service | III-4 |
| 31 | 2025 PM Peak Hour Level of Service | III-4 |
| 32 | Functional Intersection Area | IV-4 |
| 33 | Hamlet Area with Future Signal | IV-11 |
| 34 | Hamlet Area with Future Roundabout | IV-11 |

## Corridor Study

 List of TablesTables Description Page
1 Zoning Summary Information ..... II-2
2 Population Projections ..... II-9
Employment Projections ..... II-104 Summary of Study Area Developments in 2005 Monroe County LandUse Monitoring ReportII-11
NYSDOT Highway Work Permits on NYS Route 2501989 to Present ..... II-13
Access Management Features Driveways and Driveway Density ..... II-14
Existing Peak Hour Level of Service Summary ..... II-18
High Crash Rate Locations ..... II-21
2025 Peak Hour Level of Service Summary ..... III-5
Opinion of Probable Costs - With and Without Roundabouts ..... IV-16

| Route 250 |
| :---: |
| Corridor Study |
| Technical Appendices |


| Appendix | Description <br> A |
| :---: | :--- |
| Public Meetings - Presentations and Public Comments |  |
| B | Town of Penfield Land Use Analysis: A Component of the <br>  <br> C |
| NYS Route 250 Corridor Study |  |
| D | Existing Traffic Data - Intersection Counts |
| E | Level of Service Definitions - Signalized Intersections |
| F | Existing Peak Hour Level of Service Worksheets |
| G | Travel Demand Volume Summaries (PM Peak Hour) - GTC Model |
| H | Future 2025 Peak Hour Level of Service Worksheets |
| I | Opinions of Probable Cost - Worksheets |

## Chapter I: Project Statement and Purpose

## A. Introduction

New York State Route 250 is a major north-south urban arterial road in eastern Monroe County. While not a traditional radial commuter route into the Metropolitan Rochester area, Route 250 plays a unique role in serving the non-radial travel needs of the communities it links, including the:

- Town of Webster
- Village of Webster
- Town of Penfield
- Town of Perinton
- Village of Fairport
- Town of Victor (Ontario County)

Route 250 connects to village centers in both Webster and Fairport and acts as a feeder route to the major radial highways serving the Metropolitan Rochester area, including:

- NY Route 104
- NY Route 404 (Ridge Road/Main Street in Webster)
- NY Route 441 (Penfield Road)
- NY Route 31F (Church Street)
- NYS Route 286 (Atlantic Avenue/Browncroft Boulevard)
- NY Route 31 (Pittsford-Palmyra Road)
- NY Route 96 (Pittsford-Victor Road)

The higher travel speeds and connectivity of the regional freeway system, including NY Route 590 and l-490, have made Route 250 less competitive as a through route, allowing Route 250 to serve local travel needs and shorter-distance regional travel (from town to town and from town to radial feeder). The six effected communities, the Genesee Transportation Council, the New York State Department of Transportation, the Monroe

County Department of Transportation, the Monroe County Department of Planning and all six effected communities determined that a transportation study was needed to help keep Route 250 a safe and efficient roadway that can continue to serve local and regional travel needs well into the future. The Genesee Transportation Council has provided funding, under the Unified Planning Work Program, to conduct this coordinated study addressing transportation planning, mobility, safety, and development along this major north-south route.

## B. Purpose

The purpose of this study is to develop a long range plan for the Route 250 corridor that addresses the transportation needs of each linked community. Current and future congestion problems, future growth, roadway improvement needs, access management strategies, and auto, truck, transit, bicycle, and pedestrian improvements will all be addressed. An implementation strategy for the recommended improvements including possible grants or alternative funding strategies will be developed.

## C. Municipality Concerns

1) Webster (Town and Village)

Webster is one of the fastest growing towns in Monroe County. With the expansion of commercial and retail businesses within Webster, increased traffic in both the town and the village using Route 250 has become a concern. Route 250 plays an important role in the Village of Webster, and the village crossroads occurs at the intersection of Route 250 with Route 404. Future planning must be respectful of the multi-modal transportation needs within the village.

## 2) Penfield

Penfield has the greatest amount of undeveloped land within the Route 250 corridor, and as a result, there is significant concern that the character and safety of Route 250 may be in jeopardy if proactive transportation planning is not enhanced along the corridor. While Penfield has significant zoning in place to limit development in much of the eastern part of the town, the development of a coordinated land use and transportation plan would be highly desirable in helping to guide future land use decisions along the Route 250 corridor. Route 250 at Route 441 will continue to be a commercial hub and growth pressures are likely to grow at this busy intersection.
3) Perinton

Route 250 is one of two north-south roads that pass through the Town of Perinton. Both Route 250 and Turk Hill Road start at Route 96 to the south and continue to the north into the Town of Penfield. Route 250 needs to be able to continue to function effectively into the future, providing access to side streets and to the Perinton Square commercial area at the intersection of Route 250 with Route 31. Access between the Town of Perinton and Route 96 is important.
4) Fairport

A slower speed limit, the Erie Canal lift bridge, and the CSX/Amtrak at-grade railroad crossing are some key capacity constraints on Route 250 through the Village of Fairport. Route 250 is also the commercial center of the village, so future planning must be respectful of the needs of commercial businesses in this community.
5) Victor

Victor is located at a regional crossroads with the convergence of the NYS Thruway (I-90), l-490, Route 96, and Route 250. Route 250 is a vital feeder route from the Town of Perinton into the Eastview Mall commercial area along Route 96. With the future development of High Point and Victor Commerce Park and the continued residential growth of western Ontario County, the capacity of Route 250 may be severely hampered to service this vibrant commercial area without a long-term corridor vision.

## D. Study Objectives

a. Conduct a planning level study that develops a long range plan for the Route 250 corridor that addresses the transportation needs of each linked community, addressing the quality of life in each community.
b. Define the specific present and future transportation system mobility or congestion problems within the study area, including auto, truck, transit, bicycle, and pedestrian.
c. Project the future growth in the area based upon the review of adjacent land uses, zoning, access points, existing utility services, and environmentally sensitive areas.
d. Identify, evaluate, and recommend future roadway improvements and utility needs within the study area to address identified problems/needs and that align themselves with the area's existing natural and man-made features.
e. Recommend appropriate access management strategies, land use changes, traffic calming measures, traffic signal optimization/remote coordination and context sensitive design elements.
f. Recommend auto, truck, transit, bicycle, and pedestrian improvements to improve safety conditions, comfort level, and mobility along this corridor.

## E. Public Involvement

Involvement of the community and its citizens is a critical element of a transportation planning study, and for this effort, two important outlets were selected: First, a study advisory committee was formed of local planning and engineering officials from the involved municipalities, plus other involved agencies, including the Genesee Transportation Council, the NYSDOT, the Monroe County Department of Transportation, and the Monroe County Department of Planning and Development, This group met at key break points to review study progress, review interim materials, and to help assemble the existing transportation and land use inventory.

The second effort was the conduct of two public information meetings. These meetings were held at the Town of Penfield Town Office Building on:

- April 4, 2007 - Presentation of Existing Conditions -
- June 24, 2008 - Presentation of Draft Study Report

These meetings were advertised in the local papers and public information flyers were prepared and distributed to the communities for use in mailings to residents and businesses along the corridor. At both meetings, verbal and written comments were provided that were essential in the identification of existing problem areas/local concerns. A copy of the PowerPoint presentations plus summaries of the comments received are provided in Appendix ' $A$ '.

## Chapter II: Existing Conditions

A key step in the evaluation of a highway corridor is the documentation and evaluation of existing conditions. For the Route 250 Corridor Study, this required the assistance of the involved municipalities, Monroe County, and the Genesee Transportation Council to evaluate the following transportation and planning aspects of the corridor.

## A. Location and Site Description

This study examines the Route 250 corridor extending from Lake Road in the Town of Webster, New York to Route 96 in the Town of Perinton, New York (see Figure 1: Study Area). The 16-mile corridor travels through three towns and two villages, traversing agricultural, residential, commercial and industrial lands. The study area selected for this report includes the Route 250 corridor and adjacent land within a 500 foot-long area to both the east and west of Route 250.

The 1,000 foot adjacent area surrounding the 250 corridor consists of some of the major intersections, commercial centers, and residential areas in the municipalities. Within this corridor, certain sections are fully developed while other areas still consist of vacant and underdeveloped land.

## B. Existing Land Use and Zoning

The zoning classification along the Route 250 corridor differs in each town. A summary table of zoning districts within the corridor, with their associated regulations and permitted uses is provided as Table 1.

In Webster, the northernmost municipality in the Study Area, the majority of the zoning is some classification of Residential. Refer to Figure 2: Webster Zoning. Within the Village of Webster, there are areas of neighborhood business, central business, and industrial zoning. However, the majority of the corridor within the village consists


Project \#06-4108


TY:LININTERNATIONAL COMPANY

## Legend <br> $\triangle$ Underutilized Land <br> - Town Boundarie <br> - 1000 Foot Buffer <br> $\triangle$ Vacant Land <br> -Rt250 <br> - Local Roads <br> - County Roads <br> - Interstate Roads <br> -State Roads

Webster Zoning
Class I Neighborhood Commercial
Central Business
Class II Low Intensity Commercial
Neighborhood Business
Planned Unit Development
Residential R1-13.6
$\square \mathrm{R}$-1
$\square$ Large Lot Residential
R-2
Residential R1-9.6
$\square$ Residential R-M
$\square$ Low Medium Residential District
$\square$ Medium High Residential
Residential R2-9.6
$\square$ R-3
Waterfront Development
West End Business District
$\square$ office Park
Industrial


## Route 250 <br> Corridor Study

Figure 2
Webster
Zoning

## Table 1:

## Zoning Summary Information

Route $\mathbf{2 5 0}$ Corridor Study

| Town/Village | Zoning District | District Restrictions | Primary Permitted Uses |
| :---: | :---: | :---: | :---: |
| Town of Webster | R-1 Single Family Residential <br> R-2 Single Family Residential <br> R-3 Single Family Residential <br> Large Lot Single Family Residential (LL) <br> Medium High Residential (MHR) <br> Low Medium Residential (LMR) <br> Class I Neighborhood Commercial (LC-I) <br> Class II Low Intensity Commercial (LC-II) Industrial (I-N) <br> Waterfront Development (WD) Office Park (OP) | Min. Lot Area of 35,000 sf Min. Lot Area of 28,000 sf Min. Lot Area of 22,000 sf Min. 3 acre Lot Res/Min. 5 acre Lot Non-Res Min. Lot Areas of 11,250 sf and 15,000 sf Min. Lot Areas of 13,500 sf and $16,500 \mathrm{sf}$ Min. Lot Area of 15,000 sf Min. Lot Area of $30,000 \mathrm{sf}$ Min. Lot Area of $62,500 \mathrm{sf}$ Min. Lot Area of $18,000 \mathrm{sf}$ Min. Lot Area of 62,500 sf | Single Family, Religious, Parks, Schools, Agricultural Single Family, Two Family, Multi Family, Townhouses Single Family, Two Family, Multi Family, Townhouses Offices and Stores <br> Offices, Stores, Banks, Restaurants Manufactoring, Warehouses, Industrial Processes Single Family, Parks, Restaurants, Stores, Clubs Indoor/Outdoor Sports Facilities, Hotels, Offices |
| Village of Webster | R-1-13.6 R-1-9.6 R-2-9.6 RM Residential Neighborhood Business (NB) Central Business (CB) | Min. Lot Area of 13,600 sf Min. Lot Area of 9,600 sf Min. Lot Areas of 9,600 sf and 18,000 sf Min. Lot Areas of 9,600 sf and 18,000 sf Subject to R-2-9.6 Regulations 25\% Max. Lot Coverage (Res) $90 \%$ Max. Lot Coverage (Comm) | Single Family, Schools, Churches, Libraries <br> Single Family, Schools, Churches, Libraries <br> Same as Above Plus Two Family and Townhouses <br> Same as Above Plus Multiple Residence <br> Single Family, Schools, Churches, Libraries, Retail <br> Single Family, Schools, Churches, Libraries, Retail/Restaurants |
| Town of Penfield | Conservation Residential (CR-2) <br> Rural Residential (RR-1) <br> Residential 1-12 (R-1-12) <br> Residential 1-15 (R-1-15) <br> Residential 1-20 (R-1-20) <br> Multiple Residence (MR) <br> Townhouse Dwelling (TD) <br> Planned Development (PD) <br> Business Non-Retail (BN-R) <br> Limited Business (LB) <br> General Business (GB) <br> Rural Agricultural (RA-2) | Min. Lot Area of $87,120 \mathrm{sf}$ <br> Min. Lot Area of 43,560 sf <br> Min. Lot Area of $12,000 \mathrm{sf}$ <br> Min. Lot Area of 15,000 sf <br> Min. Lot Area of $20,000 \mathrm{sf}$ <br> Min. Lot Area of 3,500 sf per Apartment Unit <br> Not to Exceed 1 Unit for Each 5,000 sf of Land <br> Min. Site Area of 50 Acres to develop as PD <br> No Min. Lot Area, Bldg. Coverage on Lot No Greater Than 65\% No Min. Lot Area, Bldg. Coverage on Lot No Greater Than 65\% No Min. Lot Area, Bldg. Coverage on Lot No Greater Than 65\% Min Lot Area of 87,120 sf | One Single Family Residence Per Lot and Customary Agricultural Operations One Single Family Residence Per Lot and Customary Agricultural Operations One Single Family Residence Per Lot and Customary Agricultural Operations One Single Family Residence Per Lot and Customary Agricultural Operations One Single Family Residence Per Lot and Customary Agricultural Operations <br> Apartment House, Two Family Structures, Health Care Facilities Townhouses and Maintenance Buildings <br> All Residential Types, Commercial and Other Non-Residential Uses Offices, Banks, Medical, Public Buildings and Grounds, Commercial Schools Uses permitted in BN-R Plus Grocery, Laundromat, Retail, Etc. Uses Permitted in BN-R and LB Plus Theatres, Dept Stores, Liquor Stores One Single Family Residence Per Lot and Customary Agricultural Operations |
| Town of Perinton | Residential Class AA Residential Class A Residential Class B Residential Class C Residential Transition Residential Sensitive Restricted Business Limited Commercial Open Space Preservation | Min. Lot Area of 20,000 sf (30,000 sf Corner Lot) Min. Lot Area of $20,000 \mathrm{sf}$ ( $30,000 \mathrm{sf}$ Corner Lot) Min. Lot Area of $14,400 \mathrm{sf}$ ( $19,200 \mathrm{sf}$ Corner Lot) Min. Lot Area of $14,400 \mathrm{sf}$ ( $19,200 \mathrm{sf}$ Corner Lot) <br> Min . Lot Area of 1 Acre <br> Min. Lot Area of 1 Acre <br> Min. Lot Area of $40,000 \mathrm{sf}$ <br> Min. Lot Area of $20,000 \mathrm{sf}$ <br> Restrictions Per Town and Conservation Boards | Single Family Detached Dwellings Single Family Detached Dwellings <br> Single Family Detached Dwellings and Two Family Dwellings Single and Two Family Dwellings, Townhouses and Patio Homes Single Family Detached Dwellings Single Family Detatched Dwellings and Agricultural Offices, Medical, Hotels, Clubs <br> Uses allowed in Restricted Business plus Retail Stores and Restaurants Development Per Town Board Approval |
| Village of Fairport | Residential Limited Commercial - Residential (LC-R) Business (B-1) Canal District (C-D) Landing Development District (L-D) Industrial (M-1) | Min. Lot Areas Ranging from 6,000 to 15,000 sf No Structure Shall House More Than 3 Non-Residential Uses <br> Min. Lot Area of 5,000 sf <br> Subject to B-1 Bulk Requirements <br> Restrictions Per Village Planning Board <br> Any Use Creating Objectionable Smoke, Noise or Odor | Single Family and Multi Family Residential Based on Residential Sub-District Retail Stores, Restaurants, Office, Banks, Municipal Bldgs, Multi Family Res. Retail Stores, Restaurants, Office, Banks, Municipal Bldgs, Multi Family Res. Single Family and Multi Family Residential, Retail, Restaurants, Specialty, Office Agricultural, Open Space, Lawns, Gardens, Play Areas Uses Permitted in B-1 plus Manufacturing, Laboritory, Warehouse, Office |

## F|R|R

of R-1 (28,000 square foot minimum lots), R-2 (22,000 square foot minimum lots), and R-3 zoning (18,000 square foot minimum lots).

The existing land use pattern in Webster matches up well with its current zoning. Refer to Figure 3: Webster Land Use. Most of the Route 250 corridor in Webster is being used for residential purposes. There are some parcels that are being used as public services and recreation and entertainment that are zoned residential. Within the village boundaries, most of the land is being used as commercial or residential, which is what it is zoned. There are no large areas of land that are being used for a different purpose than what they are zoned.

In Penfield, the majority of the corridor consists of land zoned for residential and agricultural uses as shown in Figure 4: Penfield Zoning. The zoning classifications in the northernmost section of the corridor include Rural Agricultural - which primarily allows agricultural and residential uses - (2 acres minimum for single family residential lots), and to the south of that Rural Agricultural (1 acre minimum for single family residential lots). Traveling southbound, the zoning turns to Residential R-1-20 (20,000 square feet minimum lots), along with different commercially zoned areas, and finally, on the southern border, R-1-15 (15,000 square foot minimum lots).

The existing land use along Route 250 in Penfield largely reflects current zoning in most areas, as shown in Figure 5: Penfield Land Use. While most of the zoning in the northern section is called agricultural, the Town of Penfield zoning allows for agriculturally-zoned land to have residential properties built upon it. According to the Penfield land use files, residential, vacant, and agricultural land are dispersed throughout the northern sections of Penfield along Route 250. Closer to the intersection of Route 250 and Route 441, the predominant land use changes to commercial, which is also the existing zoning.

Along the Route 250 Corridor in Perinton is zoned mostly residential land, as depicted in Figure 6: Perinton Zoning. With the exception of the Village of Fairport

$\mathrm{F}|\mathrm{R}| \mathrm{A}$
A TYYLININTERNATIONAL COMPANY

## Legend

$\square$ Study Area

- Local Roads
-County Roads
_- Interstate Roads
—State Routes
- Railroad

NAME
Lake Ontario

- Village Boundary

Town Boundary
Rt250
Land Use
$\square$ Agricultural
$\square$ Commercial
$\square$ Community Services
Incustrial
$\square$ No Data or Undassified
Public SenvicesRecreation \& EntertainmentResidential
$\square$ Vacant Land
$\square$ Wild Land \& Public Parks

|  |  |  |
| :--- | :--- | :--- | :--- |

## Route 250 <br> Coridor Study

## Figure 3 <br> Webster <br> Land Use



Project \#06-4108


and the area surrounding Route 31 and Route 250, most of the land is zoned Residential A (minimum 18,000 square foot lots) and Residential B (minimum 20,000 square foot lots). Within the Village of Fairport exists commercially zoned land, along with industrial land near the railroad tracks and residentially zoned areas.

As reflected in Figure 7: Perinton Land Use, most of the land along the corridor is also currently used for residential purposes. Pockets of commercial development exist mainly in the Village of Fairport and at the Route 31/Route 250 intersection. There are sections of vacant land as Route 250 approaches Route 96. This area consists of steep slopes and some wetlands which makes it difficult for development, which is why it is zoned "Open Space Preservation."

All three towns have current land use patterns that correspond fairly well with the Towns' adopted zoning code. This shows the towns willingness to follow their adopted code and ability to develop according to it.

Many areas of the corridor still have vacant and also underdeveloped land, "Figure 8: Vacant Land Use" shows all three municipalities with the vacant land use in red. The vacant land was identified using the land use files provided by each town and also by conducting field edits for confirmation. There is a total of 498.1 acres of vacant land within 1000 feet of Route 250 in all three municipalities. While some parcels fronting 250 may have additional acreage beyond the study area buffer, for the purposes of this study the parcels were clipped at the buffer to create a limit for building out the corridor.

The visual character of the Route 250 Corridor changes as traveling along it. Some stretches of the corridor are highly developed, including the intersection of Route 250/Main Street in Webster, Route 250/Route 441 in Penfield, and Route 250/Route 31 in Perinton. Other sections, such as north of Whalen Road in Penfield, are highly agricultural and undeveloped. There are also areas of dense woods, especially near Route 96 in Victor, and areas of new subdivisions, like along Route 250 north of the Village of Webster.



## C. Environmental Constraints in the Corridor

According to the data provided to the consultant from each municipality, wetlands do overlap some of the corridor area, restricting development potential in some sections of the study area. There are no wetlands that occur in Webster crossing over Route 250, yet as the corridor progresses southward, there are some wetlands. North of Plank Road along 250 there are some wetlands that may inhibit development. There also are smaller sections of wetlands near Route 96 in Perinton.

Steep slopes are only an issue at the southern end of the corridor too near Route 96. The rest of the adjacent area near the corridor is relatively flat to gently rolling hills.

During the build out analysis, these environmental constraints were considered.

## D. Review of Comprehensive Plans and Zoning

Each of the municipalities has a current comprehensive plan which lays the groundwork for future development within their towns and villages.

The goals of the 2000 Webster Comprehensive Plan include:

1. Requiring high standards of design, site planning, and landscaping.
2. Retaining and enhancing neighborhood character and aesthetic quality of new and existing developments.
3. Protecting environmentally sensitive areas in new developments.

Webster is developing faster than the other two towns, and therefore, open space preservation should be a priority. In order to act upon this preservation attempt, the town created an Open Space Committee and an Open Space Inventory. The town's mechanisms for protecting open space are:

1. Created EPOD's which protect sensitive areas from development.
2. Encourage cluster development, allowing only $50 \%$ of the land to be developable and the other half to be preserved.
3. Encourage conservation easement which gives benefits to tax payers who do not develop their land. This program is modeled after Perinton's successful program.
4. Creation of an Agricultural Program Manager.

In Penfield, the "Town of Planned Progress," the goals are to create a residential community, while preserving historical and architectural features, create diverse commercial services, parks and recreation opportunities, protect environmentally sensitive areas, and provide a major transportation network. In 2001, Penfield created an Open Space Plan. Selected parcels, mostly 20 acres or more, were designated to be open space. Agricultural and farmland preservation occurred as well by identifying seven farms to be maintained. These goals were obtained by using the Purchase of Development Rights for the properties.

Three recommendations that came as a result of the 2000 Penfield Comprehensive Plan include:

1. Access onto major collectors and minor arterial road systems should be limited. Residential development adjacent to these systems should incorporate plantings, berms and significantly increased setbacks/lot depths to maintain quality and privacy while anticipating future improvements to these roadways.
2. New development should be required to conform to the town's Highway Frontage Policy, allowing a minimum number of access points onto major road systems in the town, without jeopardizing public safety. Input from the Penfield Transportation Committee on large scale commercial and residential development should be sought as projects are reviewed by the Planning Board.
3. The town should continue to review all new non-residential development and redevelopment to ensure that setbacks and buffers are incorporated that provide adequate visual and sound protection for adjoining residential areas. Minimum buffers and setbacks can be exceeded if, in the judgment
of the Board or official having jurisdiction, it is deemed necessary to accommodate adequate buffering.

In addition to the Comprehensive Plan, the Town of Penfield Town Board established a special Land Use Advisory Committee to provide an analysis of existing land use patterns along the corridor and make recommendations for appropriate land use considerations to be integrated into this study. The Committee broke the corridor down into segments, each with its own individual character. Members focused on issues such as residential \& rural character, natural settings, opportunities \& functional limitations and established a vision for each segment. The end product of these efforts is a document entitled "Town of Penfield Land Use Analysis: A Component of the NYS Rte. 250 Corridor Study." The creation of this document involved public involvement, data analysis, and visioning sessions. The findings of this report are utilized in the build out analysis portion of this study, and the full report is included as Appendix ' $\mathbf{B}$ '.

In Perinton, the goals of the 1998 Comprehensive Plan are:

1. The land use plan shall provide for an economic and efficient distribution of public services and utilities.
2. Natural scenic and historic resources shall be given maximum possible protection.
3. Retain appropriate rural areas and protect the viability of agricultural activities in the Town.
4. Provide an adequate circulation system for future land use with maximum economy, safety and amenity and in scale with the demand.
5. Each section of Perinton should develop in a manner which reflects and respects its intrinsic natural conditions, past history, current function, and most appealing contemporary development to create, overall, a diverse and harmonious community identity.

The Land Use recommendations set forth in the plan are:

1. Reduce driveways onto arterial and collector streets.
2. Incentives to upgrade and revitalize vacant or underutilized properties.
3. Integrate open areas between developments.

All three municipalities mentioned that their bicycle and pedestrian network needs to be improved, focusing on alternative transportation methods instead of automobiles.

## E. Population and Employment Projections from Genesee Transportation Council

 The Genesee Transportation Council created population and employment projections by TAZ for each municipality. See Table 2: Population Projections and Table 3: Employment Projections. Also, Figure 9: Household Change (Units) 2005 to 2025 and Figure 10: Household Change (\%) 2005 to 2025 display household increases and decreases, while Figure 11: Employment Change (Jobs) 2005 to 2025 and Figure 12: Employment Change (\%) 2005 to 2025 display the employment increases and decreases.According to the population projections, the Town of Webster is the fastest growing municipality, both currently and in the projections. Both villages are expected to lose population within the next few decades, most likely as families continue to move out into new subdivision developments. Overall in the corridor, there is approximately a 3\% growth rate from 2010 to 2040.

The employment projections differ from the population projections, in that Penfield is expected to have the largest growth. Penfield, according to the land use files, does have the most vacant and underutilized land, and therefore, the most opportunity for the creation of new businesses and therefore new jobs.

## F. Recent Development Trends

As of 2005, each of the municipalities had projects in the works that would affect the land use along Route 250. Table 4: Summary of Study Area Developments Identified in the 2005 Monroe County Land Use Monitoring Report shows the projects that are

Table 2:
Population Projections Route 250 Corridor Study

| Historical |  |  |  |  |  | Projected |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1960 | 1970 | 1980 | 1990 | 2000 | 2010 | 2020 | 2030 | 2040 |
| Town of Webster | 13,374 | 19,702 | 23,426 | 26,175 | 32,710 | 36,459 | 38,551 | 40,541 | 42,335 |
| Village of Webster | 3,060 | 5,037 | 5,499 | 5,464 | 5,216 | 5,158 | 5,107 | 5,064 | 5,021 |
| Town of Penfield | 12,601 | 23,782 | 27,201 | 30,219 | 34,645 | 37,030 | 38,044 | 39,316 | 40,366 |
| Town of Perinton | 7,593 | 21,609 | 32,359 | 37,072 | 40,350 | 41,690 | 42,753 | 43,647 | 44,367 |
| Village of Fairport | 5,507 | 6,474 | 5,970 | 5,943 | 5,740 | 5,737 | 5,730 | 5,724 | 5,712 |
| TOTAL | 42,135 | 76,604 | 94,455 | 104,873 | 118,661 | 126,074 | 130,185 | 134,292 | 137,801 |


| Historical |  |  |  |  |  |  |  |  |  | Projected |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1960-70$ <br> Percent | $1970-80$ <br> Percent | $1980-90$ <br> Percent | $1990-2000$ <br> Percent | $2000-2010$ <br> Percent | $2010-2020$ <br> Percent | $2020-30$ <br> Percent | $2030-40$ <br> Percent |  |  |  |  |
| Town of Webster | 47.3 | 18.9 | 11.7 | 25 | 11.5 | 5.7 | 5.2 | 4.4 |  |  |  |  |
| Village of Webster | 64.6 | 9.2 | -0.6 | -4.5 | -1.1 | -1 | -0.8 | -0.8 |  |  |  |  |
| Town of Penfield | 88.7 | 14.4 | 11.1 | 14.6 | 6.9 | 2.7 | 3.3 | 2.7 |  |  |  |  |
| Town of Perinton | 184.6 | 49.7 | 14.6 | 8.8 | 3.3 | 2.5 | 2.1 | 1.6 |  |  |  |  |
| Village of Fairport | 17.6 | -7.8 | -0.5 | -3.4 | -0.1 | -0.1 | -0.1 | -0.2 |  |  |  |  |
| TOTAL | 81.8 | 23.3 | 11.0 | 13.1 | 6.2 | 3.3 | 3.2 | 2.6 |  |  |  |  |

Table 3:

## Employment Projections <br> Route 250 Corridor Study

| Current |  |  | Projected |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2000 | 2005 | 2010 | 2015 | 2020 | 2025 |
| Town of Webster | 20566 | 22990 | 24711 | 26484 | 28309 | 30188 |
| Town of Penfield | 11513 | 14146 | 16517 | 19049 | 21741 | 24595 |
| Town of Perinton | 19784 | 23428 | 26530 | 29818 | 33291 | 36950 |
| TOTAL | 51863 | 60564 | 67758 | 75350 | 83341 | 91732 |


|  | $2000-2005$ <br> Percent | $2005-2010$ <br> Percent | $2010-2015$ <br> Percent | 2015-2020 <br> Percent | 2020-2025 <br> Percent |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Town of Webster | 11.8 | 7.5 | 7.2 | 6.9 | 6.6 |
| Town of Penfield | 22.9 | 16.8 | 15.3 | 14.1 | 13.1 |
| Town of Perinton | 18.4 | 13.2 | 12.4 | 11.6 | 11.0 |
| TOTAL | 16.8 | 11.9 | 11.2 | 10.6 | 10.1 |

Table 4
Summary of Study Area Developments

## Identified in the $\mathbf{2 0 0 7}$ Monroe County Land Use Monitoring Report

| Municipality | Status | Project Name | Address | TAZ | Land Use | Lots | Units | Acreage | Gross Floor Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fairport | Approved | Walgreens of Perinton, NY | 6707, 6709 Pittsford-Palmyra Rd | 380 | 442 | 1 | 1 | 1.9 | 14550 |

Cumulative Report on the Status of Major Projects: 1992-2006

| Municipality | Status | Project Name | Address | TAZ | Land Use | Lots | Units | Acreage | Gross Floor Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Penfield | Approved | Evangelical Church of Fairport | 1725 Fairport Nine Mile Road | 146 | 620 | 1 | 1 | 15 | 10000 |
| Penfield | Approved | Kids First Childcare | 1651 Five Mile Line Road | 368 | 600 | 1 |  | 24.1 | 8382 |
| Penfield | Approved | Windham Woods Subdivisions | 1360 Five Mile Line Road | 139 | 210 | 56 | 56 | 38.8 |  |
| Penfield | Under Construction | Camden Park | 1090 State Road | 134 | 210 | 74 | 74 | 33.86 |  |
| Penfield | Under Construction | Villas at East Hampton | 1046 State Road | 134 | 210 | 1 | 124 | 28.7 |  |
| Webster | Under Construction | Providence Est. Phase II \& III | Route 250 \& Schlegel | 120 | 210 | 21 |  | 23 |  |
| Webster | Under Construction | Belvidere Town Houses - Section 2 | Webster Road | 113 | 411 | 34 |  | 14.83 |  |
| Fairport | Pending Approval | 80 North Main Street | 80 North Main Street | 158 | 400 | 1 | 1 | 0.493 | 10350 |
| Fairport | Pending Approval | Walgreens Pharmacy | 110-120 South Main Street | 163 | 450 | 1 | 1 | 0.8887 | 9894 |
| Fairport | Under Construction | Irish Pyb/Restaurant | 17 Liftbridge Lane | 158 | 421 | 1 | 1 |  | 5299 |

Potential Development: 2008-2010

| Municipality | Status | Project Name | Address | TAZ | Land Use | Lots | Units | Acreage | Gross Floor Area |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Penfield |  | Unamed Development | No Address | 151 |  |  |  |  | 6000 |

currently proposed or under construction along the Route 250 corridor in each municipality.

## G. Roadway Geometry

Route 250 traverses north-south from Lake Rd in Webster at the boundary of Lake Ontario to Route 96 in Perinton near the Town of Victor boundary. There are nineteen travel signals along the 16 mile corridor, with three of these occurring at the entrance to local shopping centers and the other 16 occurring at traffic intersections.

For most of the corridor, the road is 2 lanes. However, at certain intersections, the lanes do widen to accommodate for traffic. The widest intersections along the study corridor are Route 96 (2 lanes in each direction with a median), Route 31 (2 lanes in each direction with a center left-turn lane) and Route 441 (2 lanes in each direction with a median). Existing intersection geometry is shown at the major intersections under study along the Route 250 corridor on Figure 13: Existing Intersection Geometry. As shown on Figure 14: Posted Speed Limits on Route 250, the speed limit along Route 250 varies from 30mph in the Village of Fairport and the Village of Webster, up to 55mph in the undeveloped stretch between Penfield and Webster.

Between 1989 and the present, there were a total of 70 driveway permits along Route 250. See Table 5: NYSDOT Highway Work Permits on NYS Route 2501989 to Present. The highest years for driveway permits were 2004 ( 8 permits), 1994 (7 permits) and 1999 (7 permits).


Figure 13
Geometry


## Legend

- Local Roads
- County Roads
—— State Roads
-Interstate Roads
Rt250 Speed Limits
- 

$-40$
$-45$
$-50$
$\longrightarrow 55$


|  | Webster | Ontario |
| :---: | :---: | :---: |
| Irondequoit |  | Walworth |
| \& | Penfield |  |
| Brighton $\qquad$ |  |  |
|  |  | Macedon |
| / Pittsford | Perinton |  |
|  |  |  |
| Mendon | Victor | Farmi |

## Route 250 Corridor Study

Project \#06-4108

Table 5
NYSDOT Highway Work Permits on NYS Route 250 1989 to 2006

| Driveway Permit | Perinton | Fairport | Penfield | Webster | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Residential | 6 | 2 | 5 | 16 | 29 |
| Minor Commercial | 3 | 1 | 9 | 6 | 19 |
| Major Commercial | 1 | 0 | 2 | 0 | 3 |
| Subdivision Street | 3 | 0 | 4 | 5 | 12 |
| Temp Access Road or Street | 3 | 0 | 3 | 1 | 7 |
| TOTAL | 16 | 3 | 23 | 28 | 70 |


| Year of Permit | Perinton | Fairport | Penfield | Webster | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | 0 | 0 | 2 | 2 | 4 |
| 1990 | 0 | 0 | 1 | 2 | 3 |
| 1991 | 1 | 0 | 0 | 0 | 1 |
| 1992 | 0 | 0 | 1 | 0 | 1 |
| 1993 | 2 | 0 | 1 | 2 | 5 |
| 1994 | 4 | 0 | 3 | 0 | 7 |
| 1995 | 1 | 0 | 4 | 0 | 5 |
| 1996 | 2 | 0 | 1 | 0 | 3 |
| 1997 | 2 | 2 | 1 | 1 | 6 |
| 1998 | 2 | 0 | 1 | 0 | 3 |
| 1999 | 4 | 1 | 1 | 1 | 7 |
| 2000 | 0 | 0 | 0 | 0 | 0 |
| 2001 | 2 | 0 | 2 | 0 | 4 |
| 2002 | 3 | 0 | 1 | 1 | 5 |
| 2003 | 1 | 0 | 2 | 1 | 4 |
| 2004 | 1 | 0 | 1 | 6 | 8 |
| 2005 | 0 | 0 | 0 | 0 | 0 |
| 2006 | 1 | 0 | 1 | 2 | 4 |
| TOTAL | 26 | 3 | 23 | 18 | 70 |

The driveway density was calculated for the municipalities by block range. Table 6: Route 250 Driveway Density by Block and Municipality shows these calculations. The highest density for a municipality occurred in Fairport Village, where there were 40.74 driveways/mile on the east side of 250 and 41.57 driveways/mile on the west side of 250 . For a specific block, the highest density occurred between Church Street and Hulbert Ave in Fairport Village with 92.15 driveways/mile.

## Table 6

Access Management Features - Driveway and Driveway Density

|  | Town of <br> Webster | Village <br> of <br> Webster | Town of <br> Penfield | Town of <br> Perinton | Village <br> of <br> Fairport | Total <br> Corridor |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Driveway Inventory | 87 | 43 | 72 | 67 | 49 | 318 |
| Driveways on East Side of Route 250 | 87 | 38 | 74 | 88 | 50 | 337 |
| Driveways on West Side of Route 250 | 174 | 81 | 146 | 155 | 99 | 655 |
| Driveways, Both Sides of Route 250 | 3.55 | 1.07 | 5.19 | 4.89 | 1.20 | 15.91 |
| Length of Route 250 (miles) | 24.51 | 40.02 | 13.87 | 13.70 | 40.74 | 19.99 |
| East Driveways/Mile | 24.51 | 35.37 | 14.26 | 17.99 | 41.57 | 21.18 |
| West Driveways/Mile |  |  |  |  |  |  |

**Town totals DO NOT include village totals

## H. Daily Traffic Volumes

As documented by the Monroe County Department of Transportation, the daily traffic on Route 250 is 5,130 to 18,900 vehicles per day, as seen in Figure 15: Webster 2005 Average Annual Daily Traffic Volumes, Figure 16: Penfield 2005 Average Annual Daily Traffic Volumes and Figure 17: Perinton 2005 Average Annual Daily Traffic Volumes. The three highest traffic locations are Route 31/Route 250 in Perinton, Route 441/Route 250 in Penfield, and Church St/Route 250 in Fairport Village.

## I. Peak Hour Traffic Volumes

A detailed traffic data collection program was conducted in order to quantify existing morning and evening peak period traffic flow on the Route 250 corridor. Intersection

$F|R| A$
A TY:LININTERNATIONAL COMPANY

| Legend <br>  <br> $\square$ |
| :--- | :--- |
| $\square$ Rt250  <br> 1234 AADT Volumes |




## Route 250 <br> Corridor Study

Figure 15 Webster 2005 Average Annual Daily Traffic Volumes


Project \#06-4108


## Route 250 Corridor Study

Figure 17 Perinton 2005 Average Annual Daily Traffic Volumes
turning movement counts were conducted at the following 12 cross street intersections with Route 250:

| Orchard Street | Penfield Road (NYS Route 441) |
| :--- | :--- |
| Main Street (NYS Route 404) | Whitney Road |
| Sanford Road | Church Street |
| Plank Road | Ayrault Road |
| Atlantic Avenue | NYS Route 31 |
| Whalen Road | NYS Route 96 |

In addition, during the course of the study and based on steering committee feedback, the intersection of Route 250 and Garnsey Road was added into the study area and a traffic count was provided by the New York State Department of Transportation.

All intersection turning movement counts were performed between 7:00 to 9:00 AM for the morning peak period and between 4:00 to 6:00 PM for the evening peak period. Existing traffic count data is provided in Appendix ' $\mathbf{C}$ ' of this report.

In addition, additional signal warrant studies were conducted at several intersections in the Town of Penfield as a separate effort, including at the intersections of Route 250 at Sweets Corner Road, the newly constructed YMCA, and Penbrooke Drive. The findings and data collected as part of this signal warrant analysis are included in Appendix ' $D$ ' of this report.

Existing morning and evening peak hour traffic volumes are displayed on Figures 18 and 19, respectively.


FROM WHALEN ROAD

Figure 18


Figure 19

## J. Existing Traffic Operations

In order to evaluate existing peak hour traffic flow along the Route 250 corridor, we need to determine its capacity or operational constraints. In order to do this, traffic engineers conduct intersection Level of Service analyses. The Level of Service (LOS) analysis methodology for analyzing signalized and non-signalized intersections is documented in the Highway Capacity Manual (Transportation Research Board, Washington, D.C., 2000). The computer software (SYNCHRO 7.0 Build 759) uses HCM procedures and was used in the analysis. Levels range from A to F, with A describing traffic operations with little or no delay and F describing traffic operations with long delays. Levels of Service of 'D' or better generally are considered acceptable. Levels of Service for signalized intersections are expressed in terms of control per vehicle. Full definitions of Level of Service for signalized intersections are included in Appendix 'E.'

Essential data that is fed into the Synchro analysis includes the peak hour traffic volumes, heavy vehicle percentages, peaking characteristics of traffic flow, intersection geometry, signal timing, bus activity, and pedestrian crossing data (if any). This information is then used to evaluate how each travel lane, directional approach and the overall intersection is operating. Based upon the existing traffic volumes, a Level of Service was assigned for each major intersection along the Route 250 Corridor, as shown in Table 7: Existing Peak Hour Operations Summary. The overall intersection operations of each intersection evaluated is depicted in Figure 20: Existing AM Peak Hour Level of Service and Figure 21: Existing PM Peak Hour Level of Service. The Level of Service printouts are provided in Appendix 'F'.

A discussion of the operation of each intersection follows:

## Route 96/Route 250 Intersection

The Route 96 intersection currently operates at an overall Level of Service (LOS) ‘B’ or better for both the morning and evening peak hours.



## Garnsey Road/Route 250 Intersection

The Garnsey Road intersection currently operates at LOS ‘C’ for the evening peak hour and LOS ‘B’ for the morning peak hour.

## Route 31/Route 250 Intersection

The Route 31 intersection overall currently operates at an acceptable overall LOS "B" during morning peak hour and LOS 'C’ during the evening peak hour. However, the Eastbound and Westbound PM approaches operate at a LOS ‘D' which is considered congested.

## Ayrault Road/Route 250 Intersection

The Ayrault Road intersection currently operates at LOS ‘C' for both the evening peak hour and the morning peak hour.

## Church Street/Route 250 Intersection

The Church Street intersection currently operates at LOS 'C' for the morning peak hour and LOS 'D' for the evening peak hour. The westbound Church Street approach operates at LOS ‘D' during both the morning and evening peak hours.

## Whitney Road/Route 250 Intersection

The Whitney Road intersection currently operates at LOS ' $D$ ' for both the morning peak hour and the evening peak hours. The eastbound Whitney Road approach operates at LOS 'F' during the evening peak hour, and the westbound Whitney Road approach operates at LOS 'E’ during the morning peak hour.

Table 7 Existing Peak Hour Level of Service Summary

|  | 2005 Existing Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Morning Peak Hour |  | Evening Peak Hour |  |
|  | Control Delay (seconds) | Level of Service | Control Delay (seconds) | Level of Service |
| Route 96 |  |  |  |  |
| EB | 5 | A | 8 | A |
| WB | 10 | B | 11 | B |
| SB | 16 | B | 19 | B |
| Overall | 10 | A | 10 | B |
| Garnsey Road |  |  |  |  |
| EB | 21 | C | 33 | C |
| WB | 22 | C | 13 | B |
| NB | 6 | A | 21 | C |
| SB | 12 | B | 16 | B |
| Overall | 14 | B | 22 | C |
| Route 31 |  |  |  |  |
| EB | 29 | C | 37 | D |
| WB | 34 | C | 38 | D |
| NB | 25 | C | 31 | C |
| SB | 34 | C | 31 | C |
| Overall | 32 | C | 35 | C |
| Ayrault Road |  |  |  |  |
| EB | 28 | C | 32 | C |
| WB | 31 | C | 30 | C |
| NB | 22 | C | 23 | C |
| SB | 27 | C | 24 | C |
| Overall | 27 | C | 27 | C |
| Church Street |  |  |  |  |
| EB | 30 | C | 20 | C |
| WB | 36 | D | 44 | D |
| NB | 16 | B | 25 | C |
| SB | 26 | C | 43 | D |
| Overall | 28 | C | 36 | D |
| Whitney Road |  |  |  |  |
| EB | 27 | C | 85 | F |
| WB | 77 | E | 42 | D |
| NB | 36 | D | 40 | D |
| SB | 32 | C | 36 | D |
| Overall | 46 | D | 53 | D |
| Route 441 |  |  |  |  |
| EB | 38 | D | 54 | D |
| WB | 46 | D | 39 | D |
| NB | 40 | D | 45 | D |
| SB | 42 | D | 58 | E |
| Overall | 43 | D | 51 | D |
| Whalen Road |  |  |  |  |
| EB | 22 | C | 38 | D |
| WB | 32 | C | 23 | C |
| NB | 13 | B | 19 | B |
| SB | 11 | B | 16 | B |
| Overall | 16 | B | 24 | c |
| Atlantic Avenue |  |  |  |  |
| EB | 24 | C | 50 | D |
| WB | 39 | D | 24 | C |
| NB | 16 | B | 32 | C |
| SB | 14 | B | 17 | B |
| Overall | 22 | C | 31 | C |
| Plank Road |  |  |  |  |
| EB | 21 | C | 22 | C |
| WB | 24 | C | 21 | C |
| NB | 9 | A | 13 | B |
| SB | 6 | A | 8 | A |
| Overall | 12 | B | 14 | B |
| Sanford Street |  |  |  |  |
| EB | 23 | C | 25 | C |
| NB | 6 | A | 4 | A |
| SB | 5 | A | 3 | A |
| Overall | 8 | A | 6 | A |
| Main Street (Route 404) |  |  |  |  |
| EB | 26 | C | 39 | D |
| WB | 32 | C | 42 | D |
| NB | 17 | B | 20 | B |
| SB | 20 | B | 34 | C |
| Overall | 22 | C | 33 | c |
| Orchard Street |  |  |  |  |
| EB | 26 | C | 17 | B |
| WB | 28 | C | 20 | B |
| NB | 3 | A | 9 | A |
| SB | 4 | A | 6 | A |
| Overall | 7 | A | 11 | B |

## Route 441/Route 250 Intersection

The Route 441 intersection currently operates at LOS ‘D’ for both the morning peak hour and the evening peak hour. The southbound Route 250 approach operates at LOS 'E' during the evening peak hour. All other approaches operate at LOS 'D' during both the morning and evening peak hours.

## Whalen Road/Route 250 Intersection

The Whalen Road intersection currently operates at LOS ' B ' for the morning peak hour and LOS ' C ' for the evening peak hour. The eastbound Whalen Road approach operates at LOS ‘D’ during the evening peak hour.

## Atlantic Avenue/Route 250 Intersection

The Atlantic Avenue intersection currently operates at LOS ' C ' for both the morning and the evening peak hours. The westbound Atlantic Avenue approach operates at LOS 'D' during the morning peak hour and the eastbound Atlantic Avenue approach operates at LOS ‘D’ during the evening peak hour.

## Plank Road/Route 250 Intersection

The Plank Road currently operates at LOS ' B ' for both the morning and evening peak hours.

## Sanford Street/Route 250 Intersection

The Sanford Street intersection currently operates at LOS 'A' for both the evening peak hour and the morning peak hour.

## Main Street (Route 404)/Route 250 Intersection

The Main Street (Route 404) intersection currently operates at LOS ' $C$ ' for both the morning peak hour and the evening peak hour. The Main Street approaches operate at LOS 'D' during the evening peak hour.

## Orchard Street/Route 250 Intersection

The Orchard Street intersection currently operates at LOS ‘A' for the morning peak hour and LOS ‘B’ for the evening peak hour.

## K. Crash History

A detailed review of crashes was conducted to identify high crash locations as summarized in Table 8: High Crash Locations for the Route 250 Corridor. Crash data was provided by the New York State Department of Transportation for a threeyear period (2001-2003), and this data was summarized by location. Next, the crash rate of each intersection or midblock location was determined and then compared to a state average crash rate. As shown in Table 8, the highest rate for the Route 250 corridor occurred between the Target Plaza Signal and Route 441 in Penfield. The rate at this location was 9.57 accidents per million vehicle miles traveled, which was approximately 3.5 times as high as the next closest High Crash Location at the section of Route 250 between Route 441 and Penbrooke Drive. The highest intersection crash locations were the intersection of Route 250 with Penfield Road (Route 441) with an crash rate of 2.63 accidents per million entering vehicles, followed by the intersection of Route 250 with Route 31 with an accident rate of 1.22 crashes per million entering vehicles. It should be noted that the intersection of Route 250 and Route 441 was improved in 2002 as part of the Route 441 (Penfield Road) improvements. Do to the limits of this study, the analysis of more recent crash data was not possible. As a result of these intersection improvements, some reduction in the overall intersection crash rate should be expected. We recommend that more recent crash data be reviewed as a follow-on effort to determine if crash rates on Route 250 between Route 441 and the Target signal have improved.

Table 8
High Crash Rate Locations (2001-2003)

## Route 250 Corridor

$\left.\begin{array}{cccccc}\hline & \text { Location } & & & \text { Nunicipality } & \text { Crash Totals }\end{array} \begin{array}{c}\text { Crash Rate } \\ \text { Average } \\ \text { Rates }\end{array}\right]$

Accident Rate expressed in accidents per Million entering vehicles for intersection accidents.
Accident Rate expressed in accidents per Million vehicle miles traveled for midblock accidents.
Shading indicates locations where the crash rate exceeds the NYSDOT Average crash rate for a similar roadway or intersection.

* Improvements constructed since 2003-crash rates shown may not be indicative of current safety conditions at these locations


## L. Public Transit Services

Route 250 is served by a variety of RTS (Rochester Transit System) bus routes, as shown on Figure 22: Bus Routes. Bus Routes cross over 250 at multiple locations, including Route 404 (Main Street) in Webster, Route 441 (Penfield Road) in Penfield, Route 31F (Church Street) in the Village of Fairport, Route 31 (Pittsford-Palmyra Road) in Perinton, and at Route 96 at the Perinton/Victor boundary.

Along with crossing the Route 250 corridor, the RTS bus service also travels along the corridor. Route 22 travels along 250 between Whalen Road and Route 441, Route 21 travels between Route 441 and Church Street, and Route 92 travels between Route 31 and Route 96 . While some sections of 250 are not serviced by an RTS bus route, there are many bus stations that provide easy accessibility to a route. Most busses run hourly during peak travel time (AM and PM) and do not run through lunch time. They run between 6am and 7 pm and average about 45 minutes travel time from the start of the route until the end.

## M. Pedestrian Accommodations

Bike accessibility is ranked as "Good" along most of the Route 250 corridor, except for in Fairport Village where it is ranked as "Fair," as shown on Figure 23: Bike Rideability. This scale was developed and rated by the Rochester Bicycling Club (RBC). Each town however mentioned in their comprehensive plan about improving bicycle access along the 250 Corridor. The RBC rating system takes into account roadway features that help or hinder bike travel, such as wide shoulders, on-street parking, street grates, and presence of heavy vehicles. This is an informal, rating scale that provides a qualitative rating, and it is should be considered as a rating for experienced bike riders (who tend to prefer traveling on-road), not casual or recreational bike riders (who tend to prefer traveling off-road).

$F|R|$
TYYLININTERNATIONAL COMPANY

## Legend

Study Area
RTS Bus Routes
$\longrightarrow 017$
021
-
-

- 092- Express
—— Local Roads
——County Roads
—State Roads
$\longrightarrow$ Interstate Routes




## Route 250 Corridor Study

Figure 22 Bus Routes

$F|R| A$

## Legend <br>  <br> Rideability

Fair
—— Local Roads

- County Roads
- State Roads
$\longrightarrow$ Interstate Routes



## Route 250 Corridor Study

Figure 23 Bike
Rideability

Figure 24: Pedestrian Accommodations shows sidewalks, pedestrian crossing signals, and crosswalks for the intersections along the Route 250 Corridor. Sidewalks exist at certain, but not all, sections of the 250 corridor. In Perinton, a small stretch of sidewalk occurs north of Garnsey Road before Cannock Dr along the right hand side. Sidewalks begin again at Boxwood Lane on both sides of Route 250 and continue on either both sides or one side until the Penfield border. In Penfield, sidewalks begin at New Wickham Drive on both sides of Route 250 and go up until Penbrooke Drive. From this point northward until the site of the new YMCA. A sideway is provided on the east side of Route 250 . Sidewalks in Webster begin at Pontiac Street and go until Orchard Street.


## Chapter III: Future Conditions and Buildout Analysis

In order to determine the future transportation needs along a transportation corridor, a comprehensive transportation planning study must assess the potential for future growth to occur both within and external to the study corridor. For the Route 250 Corridor Study, this required the assistance of the involved municipalities, Monroe County, and the Genesee Transportation Council to evaluate the following transportation and planning aspects of the corridor.

## A. Build Out Analysis

A Build Out analysis was conducted for the entire Route 250 corridor to assess the potential for vacant and "underutilized" land to be re-developed at a higher density. In this study, underutilized land was defined as land that was currently being used in a lower classification than it was zoned. The use of the term "underutilized" selected for this study does not, in any way, imply that the current use does not have value; simply, it is a measure of the maximum density of development that could occur on a property given the existing zoning.

Agricultural land was the lowest classification, followed by residential, commercial, and industrial land being the highest classification. Agricultural land that was being used as agriculture was also deemed underutilized because of the specific zoning code set forth by the municipalities, in which residences can actually be built upon agricultural land.

Once the amount of land that was vacant or underutilized was determined, that land was built out per existing zoning regulations in terms of number of homes that could be built on that parcel, or total square footage of commercial space. Then, the total households and the total square footage of commercial space were turned into potential trips using ITE guidelines. This produced future traffic volumes that were measured against the regional traffic model maintained by the Genesee Transportation Council. The results of that analysis are provided in Section "B" of this chapter.

In Webster, most of the vacant land is located north of Route 104, as seen on Figures 25A and Figure 25B: Webster Vacant and Underutilized Land. There is a total of 126.1acres of vacant land within 1000 feet of Route 250 in Webster. All of the underutilized land in the buffered area, totaling 59.98 acres, is within the Village boundaries and consists mostly of commercial properties located within industrial-zoned property. Some other underutilized properties are residentially-used properties located in commercially zoned land.

In Penfield, there are large sections of vacant and underutilized land, as shown on Figures 26A and 26B: Penfield Vacant and Underutilized Land. The reason for the large quantities of underutilized land is because of the exact specifications of the Rural Agricultural Zoning classification. The Rural Agricultural - 2 (RA-2) zoning classification was created as a result of a recommendation of the 1978 Master Plan. This zoning classification requires that subdivision development occur at a minimum of two acres per lot rather than the one-acre required in the RR-1 district. The rationale for requiring two acres per lot in the eastern portion of the town was to preserve and protect Penfield's agricultural heritage by discouraging the subdivision of land to develop tract housing similar to that experienced in the western portions of Penfield. More recently, this approach has proved to actually chew up more land per home than necessary, compared to a more traditional subdivision. Besides the land classified as underutilized, some vacant parcels exist throughout the corridor that could be developed upon. In Penfield, there are 422.56 acres of underutilized land, and 262.14 vacant acres within 1000 feet of Route 250.

In Perinton, there are very few underutilized parcels and minimal vacant land, as displayed on Figures 27A and 27B: Perinton Vacant and Underutilized Land. The underutilized land totals 11.51 acres and the vacant land totals 116.24 acres. Most of the vacant land ( 8.91 of the 11.51 acres, or $77 \%$ ) is in the southern portion of the corridor, near Route 96, and as was mentioned, is mostly undevelopable due to steep slopes and wetlands. Some vacant parcels exist in the northern section of the corridor, west of Route 250 , and may be prime for development.
$F|R| A$
TY:LININTERNATIONAL COMPANY

## Legend <br> $\triangle$ Underutilized Land <br> Town Boundaries $\square 1000$ Foot Buffer 4 Vacant Land <br> -Rt250 <br> - Local Roads <br> - County Roads <br> - Interstate Roads <br> State Roads <br> Webster Zoning

Class I Neighborhood Commercial
Central Business
Class II Low Intensity Commercial
Neighborhood Business
Planned Unit Development
Residential R1-13.6
$\square \mathrm{R}$-1
$\square$ Large Lot Residential
R-2
Residential R1-9.6
$\square$ Residential R-M
$\square$ Low Medium Residential District
Medium High Residential
Residential R2-9.6
R-3
Waterfront Development
West End Business District
Office Park
Industrial
Ontario

## Irondequoit

Rochester
Penfield
Walworth
Brighton

| East Rochester  <br> Pittsford Perinton |  |  |
| :--- | :--- | :--- |
| Mendon | Victor | Farmingt |

## Route 250 Corridor Study

Figure 25A Webster Vacant \& Underutilized Land

$F|R| A$
TY:LININTERNATIONAL COMPANY

## Legend <br> $\triangle$ Underutilized Land <br> - Town Boundaries <br> $\square 1000$ Foot Buffer <br> $\triangle$ Vacant Land <br> -Rt250 <br> - Local Roads <br> - County Roads <br> - Interstate Roads <br> -State Roads

Webster Zoning
Class I Neighborhood Commercial
Central Business
Class II Low Intensity Commercial
Neighborhood Business
Planned Unit Development
Residential R1-13.6
$\square \mathrm{R}$-1
$\square$ Large Lot Residential
R-2
Residential R1-9.6
$\square$ Residential R-M
$\square$ Low Medium Residential District
$\square$ Medium High Residential
$\square$ Residential R2-9.6
R-3
Waterfront Development
West End Business District
$\square$ office Park
$\square$ Industrial


## Route 250 <br> Corridor Study

Figure 25B Webster Vacant \& Underutilized Land



Project \#06-4108

$F|R| A$
TY:LININTERNATIONAL COMPANY




## Route 250 <br> Corridor Study

Figure 27A
Perinton Vacant \& Underutilized Land


## B. Future Traffic Volume Forecasting Assistance

The Genesee Transportation Council provided invaluable assistance with the provision of travel demand modeling expertise assistance throughout the duration of this project. GTC maintains the Rochester Metropolitan area peak hour travel demand model using the software program called TransCAD. This platform was used to evaluate the Route 250 corridor for a 2005 Base Condition and a 2025 Future Year. For 2025, the model included the regionally-projected and approved population and employment projections for the Rochester region. For the Route 250 Corridor Study, however, the model was enhanced with four special generators that were not in the Regional 2025 model, and it was felt that these trip generators were likely to result in significant traffic volumes are shifts in travel patterns that could impact traffic flow within the Route 250 Corridor Study Area. These special generators are:

- Macedon Lowes (Route 31)
- Macedon Wal-Mart (Route 31 )
- High Point Development in Victor (Route 96)
- Victor Commerce Park (Route 96)

A detailed review was also conducted of the buildout analysis within the Route 250 corridor. This potential growth was compared to the growth currently forecast within these same census tracts in the GTC MPO 2025 forecast to assess whether adjustments needed to be made to the land use inputs of the model to assess the potential effects of the buildout scenario developed for this study. After reviewing the land use, it was determined that no adjustments would be made to the model, as residential trips were well represented within the GTC forecast, and there was a concern that industrial development growth as forecast with the buildout scenario developed for this study is more aggressive than projected market conditions dictate.

In addition, an alternative model run was also conducted, based on discussions from the steering committee, to evaluate the traffic diversion benefit of an extension of Route 250 into Eastview Mall (potentially to connect to the drive separating Home Depot and Staples). One concern was that this connection would help to divert traffic volumes off Turk Hill Road,

Page III-3
according to some residents of the Town of Perinton experiences more congestion than Route 250, particularly at Route 31 and Route 96 . The results of these travel demand runs are provided in Appendix ' $\mathbf{G}$ '

## C. Peak Hour Traffic Volumes

2025 morning and evening peak hour traffic volumes are displayed on Figures 28 and
29, respectively. These volumes were developed using existing peak hour traffic volumes, and then increasing these turning movement volumes based on the forecasted increases from the GTC travel demand model between the 2005 and 2025 model runs. It should be noted that the GTC model is a PM peak hour model; however, the results of this comparative growth (\% increase) analysis was used for both the AM and PM peak hours to forecast 2025 traffic volumes.

## D. Future Traffic Operations

Based upon the existing traffic volumes, a Level of Service was assigned for each major intersection along the Route 250 Corridor, as shown in Table 9: Route 250 Corridor 2025 Peak Hour Level of Service Summary. This table also displays existing conditions for comparison purposes. The overall intersection operations of each intersection evaluated is depicted in Figure 30: 2025 AM Peak Hour Level of Service and Figure

31: 2025 PM Peak Hour Level of Service. Future 2025 Capacity Analysis worksheets are provided in Appendix 'H.'

## Route 96/Route 250 Intersection

The Route 96 intersection currently operates at an overall Level of Service (LOS) 'B' or better for both the morning and evening peak hours. The intersection will continue to operate at LOS ‘B' through the 2025 future conditions.

## Garnsey Road/Route 250 Intersection

The Garnsey Road intersection currently operates at LOS ' $C$ ' for the evening peak hour and LOS ‘B’ for the morning peak hour. The intersection will operate at LOS ‘C’ for both


FROM WHALEN ROAD

Figure 28


Figure 29



Table 92025 Peak Hour Level of Service Summary

|  | 2005 Existing Conditions |  |  |  | 2025 Future Conditions |  |  |  | 2025 Future Conditions With Mitigation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Morning Peak Hour |  | Evening Peak Hour |  | Morning Peak Hour |  | Evening Peak Hour |  | Morning Peak Hour |  | Evening Peak Hour |  |
|  | Control <br> Delay <br> (seconds) | Level of Service | Control Delay (seconds) | Level of Service | Control <br> Delay <br> (seconds) | Level of Service | Control Delay (seconds) | Level of Service | Control Delay (seconds) | Level of Service | Control <br> Delay <br> (seconds) | Level of Service |
| (1) ${ }^{\text {Route 96 }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 5 | A | 8 | A | 5 | A | 10 | A |  |  |  |  |
| WB | 10 | B | 11 | B | 12 | B | 13 | B |  |  |  |  |
| SB | 16 | B | 19 | B | 19 | B | 21 | C |  | Mitigatio | Necessary- |  |
| Overall | 10 | A | 10 | B | 11 | B | 12 | B |  |  |  |  |
| Garnsey Road |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 21 | C | 33 | C | 9 | A | 19 | B | 9 | A | 19 | B |
| WB | 22 | C | 13 | B | 9 | A | 8 | A | 9 | A | 8 | A |
| NB | 6 | A | 21 | C | 9 | A | 41 | D | 9 | A | 41 | D |
| SB | 12 | B | 16 | B | 45 | D | 34 | C | 13 | B | 34 | C |
| Overall | 14 | B | 22 | C | 30 | C | 31 | C | 11 | B | 31 | C |
| Route 31 |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 29 | C | 37 | D | 31 | C | 48 | D |  |  |  |  |
| WB | 34 | C | 38 | D | 36 | D | 39 | D |  |  |  |  |
| NB | 25 | C | 31 | C | 29 | C | 38 | D |  | o Mitigatio | n Necessary- |  |
| SB | 34 | C | 31 | C | 45 | D | 36 | D |  |  |  |  |
| Overall | 32 | c | 35 | c | 37 | D | 41 | D |  |  |  |  |
| Ayrault Road |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 28 | C | 32 | C | 29 | C | 33 | C |  |  |  |  |
| WB | 31 | C | 30 | C | 34 | C | 36 | D |  |  |  |  |
| NB | 22 | C | 23 | c | 24 | C | 27 | C |  | o Mitigatio | n Necessary- |  |
| SB | 27 | C | 24 | C | 31 | C | 27 | C |  |  |  |  |
| Overall | 27 | C | 27 | C | 30 | C | 30 | C |  |  |  |  |
| Church Street |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 30 | C | 20 | C | 37 | D | 20 | C |  |  |  |  |
| WB | 36 | D | 44 | D | 56 | E | 51 | D |  |  |  |  |
| NB | 16 | B | 25 | C | 18 | B | 29 | C |  | o Mitigatio | n Necessary- |  |
| SB | 26 | C | 43 | D | 32 | C | 65 | E |  |  |  |  |
| Overall | 28 | C | 36 | D | 37 | D | 45 | D |  |  |  |  |
| Whitney Road |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 27 | C | 85 | F | 27 | C | 144 | F |  |  |  |  |
| WB | 77 | E | 42 | D | 88 | F | 45 | D |  |  |  |  |
| NB | 36 | D | 40 | D | 43 | D | 47 | D |  | o Mitigatio | n Necessary- |  |
| SB | 32 | C | 36 | D | 41 | D | 45 | D |  |  |  |  |
| Overall | 46 | D | 53 | D | 53 | D | 78 | E |  |  |  |  |
| Route 441 |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 38 | D | 54 | D | 37 | D | 107 | F |  |  |  |  |
| WB | 46 | D | 39 | D | 47 | D | 43 | D |  |  |  |  |
| NB | 40 | D | 45 | D | 42 | D | 47 | D |  | o Mitigatio | n Necessary- |  |
| SB | 42 | D | 58 | E | 41 | D | 74 | E |  |  |  |  |
| Overall | 43 | D | 51 | D | 43 | D | 74 | E |  |  |  |  |
| Whalen Road |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 22 | C | 38 | D | 22 | C | 51 | D |  |  |  |  |
| WB | 32 | C | 23 | C | 42 | D | 23 | C |  |  |  |  |
| NB | 13 | B | 19 | B | 18 | B | 45 | D |  | o Mitigatio | n Necessary- |  |
| SB | 11 | B | 16 | B | 13 | B | 21 | C |  |  |  |  |
| Overall | 16 | B | 24 | C | 20 | c | 38 | D |  |  |  |  |
| Atlantic Avenue |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 24 | C | 50 | D | 26 | C | 50 | D | 26 | C | 24 | C |
| WB | 39 | D | 24 | C | 47 | D | 30 | C | 47 | D | 16 | B |
| NB | 16 | B | 32 | C | 22 | C | 169 | F | 14 | B | 18 | B |
| SB | 14 | B | 17 | B | 18 | B | 87 | F | 15 | B | 14 | B |
| Overall | 22 | C | 31 | C | 27 | C | 101 | F | 24 | C | 18 | B |
| Plank Road |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 21 | C | 22 | C | 21 | C | 23 | C |  |  |  |  |
| WB | 24 | C | 21 | C | 24 | C | 21 | C |  |  |  |  |
| NB | 9 | A | 13 | B | 13 | B | 42 | D |  | o Mitigatio | n Necessary- |  |
| SB | 6 | A | 8 | A | 6 | A | 10 | B |  |  |  |  |
| Overall | 12 | B | 14 | B | 14 | B | 26 | C |  |  |  |  |
| Sanford Street |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 23 | C | 25 | C | 20 | B | 20 | B |  |  |  |  |
| NB | 6 | A | 4 | A | 7 | A | 5 | A |  |  |  |  |
| SB | 5 | A | 3 | A | 5 | A | 4 | A |  | Mitigatio | Necessary- |  |
| Overall | 8 | A | 6 | A | 8 | A | 6 | A |  |  |  |  |
| Main Street (Route 404) |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 26 | C | 39 | D | 25 | C | 40 | D |  |  |  |  |
| WB | 32 | C | 42 | D | 35 | D | 49 | D |  |  |  |  |
| NB | 17 | B | 20 | B | 22 | C | 24 | C |  | o Mitigatio | n Necessary- |  |
| SB | 20 | B | 34 | C | 29 | C | 44 | D |  |  |  |  |
| Overall | 22 | C | 33 | C | 27 | C | 39 | D |  |  |  |  |
| Orchard Street |  |  |  |  |  |  |  |  |  |  |  |  |
| EB | 26 | C | 17 | B | 21 | C | 17 | B |  |  |  |  |
| WB | 28 | C | 20 | B | 21 | C | 20 | B |  |  |  |  |
| NB | 3 | A | 9 | A | 4 | A | 12 | B |  | o Mitigatio | n Necessary- |  |
| SB | 4 | A | 6 | A | 6 | A | 7 | A |  |  |  |  |
| Overall | 7 | A | 11 | B | 7 | A | 12 | $B$ |  |  |  |  |

the morning and evening peak hours through the 2025 future conditions. Potential mitigation improvements for this intersection include a 200 foot southbound exclusive right turn lane. This mitigation would improve the morning peak hour LOS to LOS ‘B'.

## Route 31/Route 250 Intersection

The Route 31 intersection currently operates at LOS 'C' for both the evening peak hour and the morning peak hour. The intersection will operate at LOS 'D' or better through the 2025 future conditions.

## Ayrault Road/Route 250 Intersection

The Ayrault Road intersection currently operates at LOS 'C' for both the evening peak hour and the morning peak hour. The intersection will continue to operate at LOS 'C' for both the morning and evening peak hours through the 2025 future conditions.

## Church Street/Route 250 Intersection

The Church Street intersection currently operates at LOS 'C' for the morning peak hour and LOS ‘D' for the evening peak hour. The intersection will operate at LOS ‘D' for both he morning and evening peak hours through the 2025 future conditions.

## Whitney Road/Route 250 Intersection

The Whitney Road intersection currently operates at LOS 'D' for both the morning peak hour and the evening peak hour. The intersection will operate at LOS ' $D$ ' for the morning peak hour but fall to LOS 'E' for the evening peak hour through the 2025 future conditions. There is limited Right-of-Way available at this intersection to make significant capacity improvements.

## Route 441/Route 250 Intersection

The Route 441 intersection currently operates at LOS ‘D’ for both the morning peak hour and the evening peak hour. The intersection will operate at LOS ' D ' for the morning peak hour but fall to LOS 'E' for the evening peak hour through the 2025 future conditions. There is limited Right-of-Way available at this intersection to make significant capacity improvements.

## Whalen Road/Route 250 Intersection

The Whalen Road intersection currently operates at LOS ' B ' for the morning peak hour and LOS ' C ' for the evening peak hour. The intersection will fall to LOS ' C ' for the morning peak hour and LOS 'D' for the evening peak hour. No mitigation is necessary for this intersection.

## Atlantic Avenue/Route 250 Intersection

The Atlantic Avenue intersection currently operates at LOS ' C ' for both the morning and the evening peak hours. The intersection will continue to operate at LOS 'C' for the morning peak hour, but will fall to LOS ' $F$ ' with a delay of 101 seconds for the future 2025 conditions. The intersection drops due to longer delay times for the northbound and southbound approaches which both will operate at LOS ' $F$ ' with 198 seconds and 87 seconds of delay, respectively. A potential mitigation measure includes the addition of an exclusive left turn lane in both the northbound and southbound approaches. These additional lanes would improve both the northbound and southbound approaches to LOS ' B ', and the overall LOS for the evening peak hour to LOS ‘B'. An alternative improvement would be to construct a roundabout intersection at this intersection in place of a traffic signal.

## Plank Road/Route 250 Intersection

The Plank Road currently operates at LOS ' B ' for both the morning and evening peak hours. The intersection will continue to operate at LOS ' B ' for the morning peak hour and will operate at LOS ' $C$ ' for the evening peak hour in the 2025 future conditions.

## Sanford Street/Route 250 Intersection

The Sanford Street intersection currently operates at LOS ' $A$ ' for both the evening peak hour and the morning peak hour. The intersection will continue to operate at LOS ' $A$ ' for both the morning and evening peak hours through the 2025 future conditions.

## Main Street (Route 404)/Route 250 Intersection

The Main Street (Route 404) intersection currently operates at LOS 'C' for both the morning peak hour and the evening peak hour. The intersection will continue to operate at LOS ' C ' for the morning peak hour but fall to LOS ' $D$ ' for the evening peak hour through the 2025 future conditions.

## Orchard Street/Route 250 Intersection

The Orchard Street intersection currently operates at LOS ' $A$ ' for the morning peak hour and LOS ' B ' for the evening peak hour. The intersection will continue to operate at LOS ' $A$ ' for the morning peak hour and LOS ‘B' for the evening peak hour through the 2025 future conditions.

## Chapter IV: Project Strategies and Recommendations

Based on the problems and needs identified through both the consultant work effort and the first public meeting, a list of strategies has been developed for consideration by the project team. These strategies include both corridor-wide strategies as well as many specific to each individual municipality within the corridor.

## A. Corridor-Wide

There are several recommendations that are appropriate for the entire corridor and would be most effective if implemented by all study area municipalities concurrently. These recommendations are organized into two categories:

- physical improvements,
- policy changes.

These recommendations are general in nature and are based on the desires and input of the municipalities and residents involved in the planning process. The recommendations were not developed using detailed engineering techniques and would require further investigation to determine if warranted under local, regional, and state standards. Further involvement with approval agencies would be required prior to the actual implementation of most of the recommendations provided in this section, particularly those related to the highway and infrastructure improvements. The New York State Department of Transportation has ownership of the Route 250 right-of-way within the Towns of Webster, Penfield and Perinton and is the permitting agency for any improvements within this right-of-way. The Villages of Webster and Fairport own and maintain their own roads, including the road designated as part of the Route 250 corridor.

## 1. Physical Improvements

- No corridor-wide deficiencies were noted; therefore, no specific recommendation have been developed.
- Continuing efforts should be made to promote the use of public transportation in the Route 250 corridor, including making more connections along the corridor possible, such as Eastview Mall area to Fairport or Webster Village to Penfield Road.


## 2. Policy Changes

## Access Management Overlay District

The purpose of the overlay district is to enable the development of lands along Route 250, in a comprehensive manner within all the municipalities, in accordance with the goals set forth by the communities during this planning process for controlling access onto the mainline. These goals include:

- Slowing traffic,
- Improving corridor safety,
- Providing safe and comprehensive access for pedestrian and bicyclists,
- Improving driver predictability, and
- Combining/aligning driveways and access drives.

An overlay district would assist in moving toward many of these goals. The overlay would span 1,000 feet on either side of Route 250 within the study area, and be adopted by all the study municipalities as an additional governing document to their existing
zoning. While specific wording would need to be drafted by the impacted communities, topics that would be covered include:

- Intent of district
- Boundaries of district
- Site characteristics (orientation, lot dimensions, access, setbacks, location of parking)
- Building standards (facades, height, lot coverage)
- Lighting (location, glow, style)
- Signage (size, location, style)
- Landscaping (buffering, foundation plantings, peripheral plantings, parking areas, screening areas)

There are several regulations that could be placed into the overlay district.

## i. Corner Clearance

Corner clearance addresses the distance between an intersection and the nearest driveway. Corner clearance is especially a concern as driveways located near intersections are often located within the functional area of an intersection. According to the American Association of State Highway and Transportation Officials (AASHTO)i, "driveways should not be located within the functional area of an intersection or in the influence area of an adjacent driveway."

The difference between the physical area of an intersection versus the functional area of an intersection is depicted in Figure 32.

Figure 32 - Functional Intersection Area


Source: Access Management Manual, TRB, 2003, Figure 8-12, p. 132.

Adequate corner clearance should be provided at all signalized and unsignalized intersections on Route 250 within the Study Area. For the study corridors, the following standards are recommended:

- Small generator (less than 1,000 daily trips) $=200 \mathrm{ft}$
- Large generator (more than 1,000 daily trips) $=400 \mathrm{ft}$


## ii. Driveway Spacing

The separation of conflict points simplifies the driver's decision by giving drivers a longer time to respond to successive access related events. Since driveways generate turning movements, driveways that are inadequately spaced create several functional and safety problems, particularly on roadways meant to be predominantly a through road. Providing adequate distance between driveways is a critical measure for controlling the flow of traffic, and the safety of ingress and egress.

For Route 250, the minimum driveway spacing standards should be:

- Small commercial generator (1,000 or less daily trips) = 150 ft
- Large commercial generator (more than 1,000 daily trips) $=350 \mathrm{ft}$ full access; 150 ft right-in-right-out
- Single family residential lots should be restricted to shared access to achieve access management or at the discretion of the town, could be restricted to internal access to adjoining parcels. For isolated lots, a minimum driveway spacing standard of $20 \%$ of the lot width should be applied.

For these driveways, a minimum driveway throat length (distance measured from the edge of travelled way on Route 250 into the site) of 50 feet should be required for commercial properties that generate less than 100 peak hour exiting vehicle trips per hour, between 100 and 200 peak hour exiting vehicle trips per hour, a throat length of 100 feet should be provided, and in excess of 200 vehicles per hour, a throat length of 200 feet should be provided.

## iii. Clearance Zone

A clearance zone is often created to preserve future land for ROW expansions. The forethought to preserve this land in advance of structures or amenities that are difficult to relocate can save significant money if the land is needed for a roadway widening.

A clearance zone of 50 (fifty) feet measured from the centerline of Route 250 should be required for all properties with frontage on such roads and for all properties with frontage on roads intersecting such roads for a distance of 300 feet from the intersection.

No permanent structure or use, including parking or other appurtenances serving traffic, holding ponds, septic systems, or any other use which by their removal or relocation would render the property economically unusable or in conflict with other federal, state or local requirements or which would substantially diminish the value of the property shall be allowed within the clearance zone.

Utilities, lighting, drainage, signs, landscaping, and pedestrian and bicycle facilities may be located within the clearance zone.

## iv. Sign and Landscaping Standards

Sign and landscaping standards should ensure that the location of such amenities do not block the view for travelers entering or existing driveways or roadways. Further, that the view of any pedestrian facilities are not obstructed.

## v. Pedestrian Accommodations

As the Route 250 corridor has a mix of residential, commercial, recreation, and institutional uses, the study towns and villages should continue to expand the public sidewalk system as funding is available. Prioritization should be given to linking higher density residential areas to schools, parks and commercial areas in close proximity.

## vi. Subdivision Requirements

The subdivision of large lots to create several smaller ones provides an opportunity to make critical access control decisions that will have a significant impact on how well, or poorly, those parcels can be tied into the transportation
network. The following should be considered for incorporation into each municipality's subdivision regulations:

- Access plan for full parcel must be submitted prior to subdivision approval
- Internalize access to the extent possible (minimize curb cuts on public roads) and provide adequate spacing from main intersections
- Allow for easements/ cross connections to abutting properties
- Look for potential to cross-connect to multiple roads
- Require collectors be built to higher standards


## vii. Plan/ Development Requirements

While there are several standards that can be created for current and future developments in the Study Area, many access management and transportation planning issues are best addressed on a case by case basis during the site plan review phase of a project. During this phase, the municipality representatives and, at appropriate times NYSDOT representatives, should have several meetings with potential developers to incorporate as many of the guidelines outlined below as possible.

- The number of access points for each development that would front Route 250 should be limited to one unless the frontage is greater than 1,000 feet.
- Where multiple tracts of land are developed as a single large entity, such as a shopping center, office park or similar development, they should be treated as one tract of land for determining access points.
- If an access road is likely to require a traffic signal, then the roadway should ideally be constructed to, align with

Page IV-7
a public roadway or access road on the other side to maximize use of the light, with room for internal extension, or extension to an adjacent property, for future use.

- Common driveways that provide vehicular access to more than one site are encouraged.
- Construct the driveway as a road, full or partial for width or depth of property.
- All outparcels should be internalized using the main access drive of the principal retail center with access to the outparcel being adequately spaced from the main intersection.
- Inter-parcel connections should be provided to facilitate the movement of traffic and minimize the demand for local trips on the highway.
- For the purpose of assuring safe and continuous movement of vehicles, interconnections between rear yards of adjoining parcels are preferred.
- Pedestrian linkages between uses in commercial developments should be encouraged and/or required.
- Parking aisles should be separated from vehicle circulation.
- Parking areas should be designed so that pedestrians walk parallel to moving cars rather than perpendicular.
- Parking areas should be separated from structures by a raised concrete walkway and/or landscaped strip. Situations where parking spaces directly abut the structures should be avoided.
- Signs should be placed at or near the entrance to a building or site to indicate the more direct access to the building.


## B. Municipality-Specific Recommendations

## 1) Town of Perinton/Town of Victor

## a) Physical Improvements

In order to progress an improvement, the transportation benefits will need to be re-evaluated by the NYSDOT and GTC. The following recommendations have only been developed to the conceptual feasibility level and require more engineering determination.

- Route 250/Garnsey Road Intersection - Due to a heavy southbound right-turn movement that occurs throughout the day, consideration should be given to the construction of a southbound right-turn lane. Frequent illegal use of the shoulder for right-turns was observed at this intersection during both peak and off-peak hours of the day.
- Route 250/Route 96 Intersection - Consideration should be given to the extension of Route 250 into the Eastview Commons/Eastview Mall developments to connect to the road that now divides the Home Depot and Staples stores. While this will have only minor effects in reducing traffic volumes on Turk Hill Road during typical traffic volume conditions, it will likely have significant benefits during Holiday traffic and will significantly reduce traffic volumes on Route 96 between Route 250 and the Eastview Commons entrance.
- Route 250 Southbound between Georgetown Lane and Perinton Hills Office Park/Shopping Center Driveway - Consideration should be given to restriping the right-most southbound travel lane as an exclusive right-turn lane at the intersections of Route 250 with the

Perinton Square shopping center driveway and with Route 31. No construction is required to make this improvement.

## b) Policy Changes

## 1. Preservation of open space - protection of natural features

The small amount of land considered vacant or underutilized in the Town of Perinton along the Route 250 corridor is largely in the Residential Transition zoning district, with some already in open space and preservation. The continuation of well planned residential developments, particularly in the southern portion of the corridor is critical, given the topography, steep slopes, wetland areas and wooded lots. Conservation subdivision design, where clustered housing is situated to avoid environmentally sensitive areas, is particularly well suited for this portion of Perinton. This type of residential development would also benefit the corridor by having single access points for each development, rather than each home taking frontage development on Route 250 and having their own driveway.

## 2. Consideration for rezoning 5.2 acre parcel southeast section of Route 250 and Route 31

Just south of the intersection of Route 250 and Route 31, there is an approximately 5.2 acre parcel currently zoned Residential A that may be appropriate for high density residential or office uses. It is adjacent to commercial uses to the north and west, with high density housing to the south. Given the small frontage on Route 250 , and close proximity to the signal at Route 31, internal access via existing retail parking areas and drives, and/or access to Courtney Road should be considered before primary access is granted onto Route 250.

## 2) Town of Penfield

## a) Physical Improvements

In order to progress an improvement, the transportation benefits will need to be re-evaluated by the NYSDOT and GTC. The following recommendations have only been developed to the conceptual feasibility level and require more engineering determination.

- Route 250/Hamlet Area (Sweet's Corner/YMCA) - Considerable study was invested in the emerging Hamlet area identified in the Town of Penfield's Land Use Plan, and the development of transportation solutions was initially seen as problematic with the construction of the YMCA at a mid-block location. Future re-alignment of Sweet's Corner Road is desirable in order to develop a future fourway controlled intersection that can function as a crossroads for this Hamlet area and provide for both vehicular and pedestrian crossing activities.

Two potential concepts have been developed. The first, as shown in Figure 33: Hamlet Area with Future Signal is a traditional approach that re-aligns Sweet's Corner Road to the south of the garden center, provides access roads for the YMCA and the garden center and other potential future development. Primary access would be controlled by a traffic signal and the intersection would be designed to ultimately provide left and right-turn lanes, if needed. Pedestrians would cross Route 250 and the re-aligned Sweet's Corner Road using crosswalks at the approaches to the intersection controlled with pedestrian signals.

The second concept, as shown in Figure 34: Hamlet Area with Future Roundabout is quite similar, with the exception that a single-

Page IV-11


lane roundabout intersection would be provided on Route 250 instead of a traffic signal, and this intersection would need to be located slightly to the south of where the signal is shown due the design requirements of the roundabout. Pedestrians would cross Route 250 and the re-aligned Sweet's Corner Road using crosswalks at the approaches to the roundabouts at the splitter islands. At these locations, drivers are typically driving between 15 to 20 mph based on the design characteristics of the roundabout.

- Route 250/Atlantic Avenue Intersection- Due to existing peak hour intersection traffic operations and concerns raised about accident potential and sight distance, NYSDOT should consider the construction of northbound and southbound left-turn lanes on Route 250 at this intersection as a safety improvement/congestion relief measure. Currently, all four approaches have only one lane with wide shoulders. By 2025 with this improvement, the intersection would improve during the evening peak hour from Level of Service F to operate at Level of Service B. An alternative improvement that the Town could consider for this intersection would be the construction of a roundabout intersection, which would have the added traffic calming benefits of slowing traffic down. Coupled with a potential roundabout to the south near Sweet's Corner, this could create a reduced speed zone in an area operating with a posted speed of 55 mph with public concern expressed at the first public meeting to reduce the speed limit.


## b) Policy Changes

## 1. Adoption of Town of Penfield Land Use Analysis - Route $\mathbf{2 5 0}$

This document was completed in 2007 by a special land use committee formed by the Penfield Town Board in April of 2006. This committee was charged with the analysis of existing land use patterns along the corridor

Page IV-12
and making recommendations for appropriate land use considerations. The outcome is a series of specific recommendations broken down by sector, each with its own vision, goals, and possible incentives. The public was involved in creating these findings and they are consistent with access management techniques and proactive planning which both contribute to positive corridor management. The Committee broke the corridor down into six segments, each with its own individual character, issues, and opportunities to further provide detailed information for this corridor study. The complete land use report can be found in Appendix 'B'.
2. Strict guidelines for subdividing - master plan for access, circulation, etc.

Throughout the Penfield portion of the corridor, but largely north of Sweets Corners Road, there is a potential for multiple curb cuts to residences where there are large parcels available for future housing developments. There is a need for requiring a master plan for more than one subdivision and to design single lots for future connection to access road in the future. The use of clustering is particularly appropriate for this area.

## 3. Flexibility in reuse for Route 250/ Atlantic Avenue Intersection

Due to high traffic volumes, proximity to commercial uses on northeast corner, and redevelopment potential, the west side of Route 250 near the Atlantic Avenue intersection should be considered for rezoning to allow retail uses - ensuring adequate area for feasible commercial uses with access set back enough from existing signal. Since the southeast corner abuts existing residential uses, consideration for business non-retail (offices, etc) should be considered.
4. Hamlet development near Route 250 and Sweet Corners Road intersection

Planning efforts for this area have shown an interest in creating a node of development largely focused on agribusiness with some potential for niche retail and/or hamlet style housing mixed in. With the vineyards adjacent to Dublin Road, and the farm market and nursery on Route 250 near Sweets Corners Road, there is a cluster of agricultural businesses now, with the potential for growth. If/as this area is developed into this mix of uses, primary consideration needs to be given to providing primary access onto access or secondary roads, with limited access onto Route 250. Preferably, if this are does develop, a traffic signal or roundabout could be provided at a re-aligned Sweets Corners Road (as shown previously in Figures 33 and 34), providing and opportunity for safe pedestrian crossing, and potential to cross access to properties on the west side of Route 250, including the new YMCA.

## 3) Town/Village of Webster

a) Physical Improvements

- At-grade rail crossing - Concern was expressed at the first public meeting about the condition of this at-grade crossing for its effects on vehicular traffic. Consideration should be given to the improvement or increased maintenance of this crossing.
b) Policy Changes


## 1. Flexibility for Central Business/ Neighborhood Business development/ redevelopment

There are a substantial amount of parcels that front Route 250 which are currently classified as "underutilized" meaning they could be redeveloped for a more intense use than is currently on site. To maximize the redevelopment potential for these properties, which would include potential combining of parcels, creating shared access points, and

Page IV-14
adhering to the access overlay recommendations, these areas should be given flexibility during site planning and review, or through rezoning. Current setbacks, parking, and coverage requirements MAY be appropriate or may be considered for modification based on the proposed project.

## 2. Consideration for rezoning industrial lands along Route 250 north of Route 104

Just north of Route 104 is an area zoned industrial that fronts Route 250, and continues northeast into a large industrially zoned area, largely occupied by Xerox. The portion within the study area is currently classified as underutilized because it is currently being used for a less intense use. The majority of these parcels are being used for commercial purposes, rather than industrial. This portion of land abuts residential areas of the Town. For both its redevelopment potential, and to better transition to the residential areas, this area should be considered for rezoning to a neighborhood business zone.

## C. Probable Cost of Proposed Physical Improvements

A conceptual opinion of probable design and construction costs was prepared for the physical improvement recommendations contained in this report. These recommendations are general in nature and are based on the desires and input of the municipalities and residents involved in the planning process. The recommendations were not developed using detailed engineering techniques and would require further investigation to determine if warranted under local, regional, and state standards. Table 10 displays two different options - one with the construction of roundabouts at a relocated Sweets Corner Road and Atlantic Avenue and the second with more typical signal improvements at a relocated Sweets Corner Road and left-turn lanes at Atlantic Avenue. In total, these two options total between $\$ 2.5$ to $\$ 2.7$ million dollars to design and construct. Worksheets were prepared detailing the technical assumptions, unit prices, quantities and other factors, and this is presented in Appendix ' $\mathbf{I}$ '.

Table 10 - Opinion of Probable Costs - With and Without Roundabouts

| Proposed Improvement | Option - Without <br> Roundabouts | Option - With <br> Roundabouts |
| :--- | :---: | :---: |
| Rte 250 @ Rte 96 - Extension of Route 250 <br> into Eastview Commons | $\$ 711,000$ | $\$ 711,000$ |
| Garnsey Road - Add SB Right Turn Lane | $\$ 124,000$ | $\$ 124,000$ |
| Route 250 @ Sweets Corner Rd - Realign and <br> install signal | $\$ 640,000$ | NA |
| Route 250 @ Sweets Corner Rd - Realign and <br> install roundabout | NA | $\$ 650,000$ |
| Route 250 @ Atlantic Avenue - Construct <br> NB/SB Left Turn Lanes | $\$ 343,000$ | NA |
| Route 250 @ Atlantic Avenue - Construct <br> Roundabout | $\$ 113,000$ | $\$ 113,000$ |
| Rt. 250 @ RR Crossing | $\$ 1,931,000$ | $\$ 1,855,000$ |
| Subtotal | $\$ 738,000$ | $\$ 709,000$ |
| Contingency (21\%) \& Fees | $\$ 2,669,000$ | $\$ 2,564,000$ |
| TOTAL |  |  |

[^0]
[^0]:    i American Association of State Highway and Transportation Officials, A Policy on Geometric Design for Highways and Streets, 2004, p. 556-558.

